

CO₂-Fußabdruck / Product Carbon Footprint

E-Durchlauferhitzer

Eigentümer der Erklärung:

CLAGE GmbH Pirolweg 4 21337 Lüneburg

Fon: +49 4131 89 01-0 info@clage.de www.clage.de

Für die Ermittlung des CO_2 -Fußabdrucks wurde der Product Life Cycle Accounting and Reporting Standard des Greenhouse-Gas-Protocol (GHG Protocol) von 2011 herangezogen.

Version 3.0, 10/2025

Erklärung zur Vergleichbarkeit der Daten

Die in diesem Bericht dargestellten Ergebnisse sind spezifisch bezüglich der Annahmen und Methoden der CLAGE GmbH. Die Ergebnisse sind nicht darauf angelegt, als Grundlage für Vergleiche gegenüber anderen Unternehmen oder Produkten zu dienen. Auch bei ähnlichen Produkten können unterschiedliche Datenqualitäten zu nicht vergleichbaren Ergebnissen führen. Für ein Glossar und weitere Einsicht in den Prozess der PCF-Erhebung kann der Leser den GHG Protocol Product Life Cycle Accounting and Reporting Standard (WRI/WBCSD, 2011)¹ hinzuziehen.

 $^{^1\,}https://ghgprotocol.org/sites/default/files/standards/Product-Life-Cycle-Accounting-Reporting-Standard_041613.pdf~(21.09.2023)$

INHALT

1.	Einle	itung	6
2.	Defir	nitionen und Abgrenzungen	6
	2.1	CO ₂ -Fußabdruck (Product Carbon Footprint)	6
	2.2	Embodied Carbon und Operational Carbon	7
	2.3	Global Warming Potential (GWP)	8
	2.4	Environmental Product Declaration (EPD)	9
3.	Unse	re Analyse und Methodik	9
	3.1	Cut-off-Ansatz	10
	3.2	Lebenswegphasen	10
	3.2.1	Rohstoffgewinnung und Vorverarbeitung	11
	3.2.2	Produktion	12
	3.2.3	B Distribution und Lagerung	12
	3.2.4	Nutzung	12
	3.2.5	Entsorgung/ Recycling/ End-of-Life	13
4.	Syste	emfließbild Produkt Lebenszyklus	14
5.	DSX	Touch	18
	5.1	Produktvorstellung	18
	5.2	Analyseeinheit und funktionelle Einheit	18
	5.3	Material deklaration	19
6.	DEX	Next	20
	6.1	Produktvorstellung	20
	6.2	Analyseeinheit und funktionelle Einheit	20
	6.3	Materialdeklaration	21
7.	CEX-	-U	22
	7.1	Produktvorstellung	22
	7.2	Analyseeinheit und Funktionelle Einheit	22
	7.3	Material deklaration	23
8.	мсх	3	24
	8.1	Produktvorstellung	24
	8.2	Analyseeinheit und Funktionelle Einheit	24
	8.3	Material deklaration	25
9.	Qual	itätssicherung	26
	9.1	Daten	26
	9.2	Angaben zur Prüfungserklärung	27
	9.3	Prüfungsergebnis	27
10	Abkü	irzungsverzeichnis	28
11	Begr	iffserklärungen	30
12	Ouel	len	31

1951 begann Claus-Holmer Gerdes mit dem Vertrieb von Kleindurchlauferhitzern unter der Marke CLAGE. Heute sind wir in dritter Generation als inhabergeführtes, mittelständisches Industrieunternehmen nach wie vor in der norddeutschen Hansestadt Lüneburg ansässig. Rund 290 Mitarbeitende sind in den Bereichen Entwicklung, Produktion, Vertrieb und Kundendienst tätig. Als Pionier und Marktführer für Kleindurchlauferhitzer sehen wir uns auch als Vordenker auf dem Gebiet der dezentralen Warmwasserversorgung. So sind wir ständig auf der Suche nach neuen Detaillösungen für unser Sortiment an E-Durchlauferhitzern. Zahlreiche Auszeichnungen und eine hohe Kundenzufriedenheit sind Bestätigung unseres Anspruches, die Experten für E-Durchlauferhitzer zu sein.

Zuverlässigkeit, Fairness und verantwortungsbewusstes Handeln sind wesentliche Bausteine unseres geschäftlichen Erfolgs.

Als modernes Industrieunternehmen setzen wir uns aktiv für Umweltschutz und Klimaneutralität ein. Wir produzieren in Deutschland und agieren nachhaltig, ethisch und sozial.

Corporate Responsibility

Nachhaltigkeit: Unser Fundament und unsere Verpflichtung

Nachhaltigkeit ist tief in unserer DNA verwurzelt und prägt unser tägliches Handeln sowie unserer Prozesse. Im Folgenden finden Sie einen Einblick in unsere kontinuierlichen Bemühungen, verantwortungsbewusst und zukunftsorientiert zu agieren.

Umweltfreundliche Verpackung

Gerätekartons mit einfarbigem Flexodruck ohne Offset-Papier sowie Einlagen mit 30 % Grasanteil schonen wertvolle Ressourcen der Natur.

Palettenverpackung ohne Folie

Durch den Einsatz Palettengummibänder werden jährlich über 67 km Kunststofffolie eingespart.

wiederverwendbarer

100% regenerativer Strom

Das gesamte Unternehmen (inkl. der Produktion) wird seit 2019 mit Ökostrom betrieben, wodurch keine Treibhausgasemissionen entstehen.

Wassersystem für Mitarbeiter

Keine Kisten, keine Logistik und keine Plastikflaschen dank des Wassersystems Zip HydroTap. Das spart Ressourcen und Treibhausgasemissionen.

Umweltfreundliche Werbemittel

Bei Drucksachen und Werbemitteln wird auf umweltfreundliche und zertifizierte Alternativen geachtet.

Elektromobilität

Seit dem Jahr 2016 wird die Flotte sukzessive auf Elektrooder Hybridfahrzeuge umgestellt. Aktuell beträgt der Anteil solcher Fahrzeuge am Fuhrpark 43%.

LED-Beleuchtung

Nahezu alle konventionellen Leuchtmittel im Unternehmen (inkl. Produktion) wurden durch LED-Technik ersetzt.

Elektroschrauber

In der Produktion werden Druckluftdurch sparsamere Elektroschrauber ersetzt.

Entwicklung mit Weitsicht

Wir streben danach, reparierbare und recyclingfähige Geräte mit niedrigem CO₂-Fußabdruck zu entwickeln, damit langfristig Ressourcen geschont werden.

Energiesparende **Technik**

Viele unserer Durchlauferhitzer sind mit einem effizienten Energiesparmodus ausgestattet und verfügen zudem über ein Energielabel der Klasse A.

Papiereinsparung

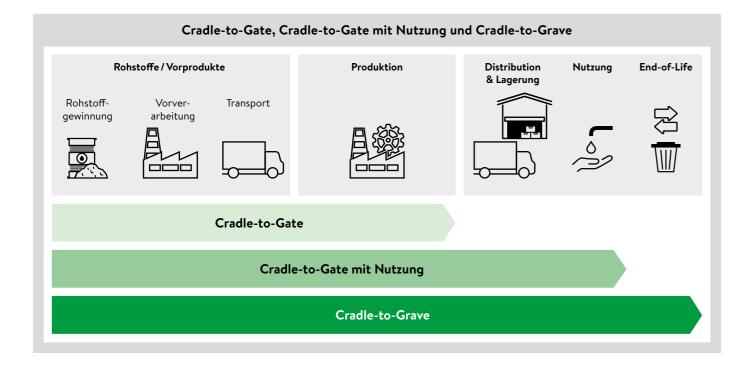
Der hohe Digitalisierungsgrad im Unternehmen vermeidet eine Menge Papierabfall.

Klimaneutraler **Paketversand**

Bereits seit 2019 versenden wir unsere Pakete über den klimaneutralen Versand von GLS, wodurch 60% unserer Sendungen klimaneutral erfolgen.

1. Einleitung

Unser Engagement für Nachhaltigkeit, Umweltverantwortung und Qualitätsmanagement basiert auf unseren Zertifizierungen nach **DIN EN ISO 14001:2015, DIN EN ISO 9001:2015** und **DIN EN ISO 50001:2018**. Diese Standards bilden die Grundlage für die systematische Umsetzung von Umweltstandards, Qualitätskontrollen und Energiemanagement.


Angesichts der wachsenden globalen Notwendigkeit zur Reduktion von Treibhausgasemissionen (THG) gewinnt der **Product Carbon Footprint (PCF)** als Instrument zur Ermittlung der Klimawirkung unserer Produkte an Bedeutung. Unser Ziel ist es, Transparenz zu schaffen, Einsparpotenziale aufzudecken und Maßnahmen zur CO₂-Reduktion umzusetzen.

2. Definitionen und Abgrenzungen

2.1 CO₂-FUSSABDRUCK (PRODUCT CARBON FOOTPRINT)

Der CO₂-Fußabdruck gemäß dem **GHG-Produktstandard** umfasst die Bilanzierung aller THG-Emissionen über den gesamten Lebenszyklus eines Produkts. Dabei werden alle relevanten THG gemäß des Kyoto-Protokolls berücksichtigt und in **Kohlendioxid-Äquivalente (CO₂e)** umgerechnet, um eine standardisierte Vergleichbarkeit zu gewährleisten.

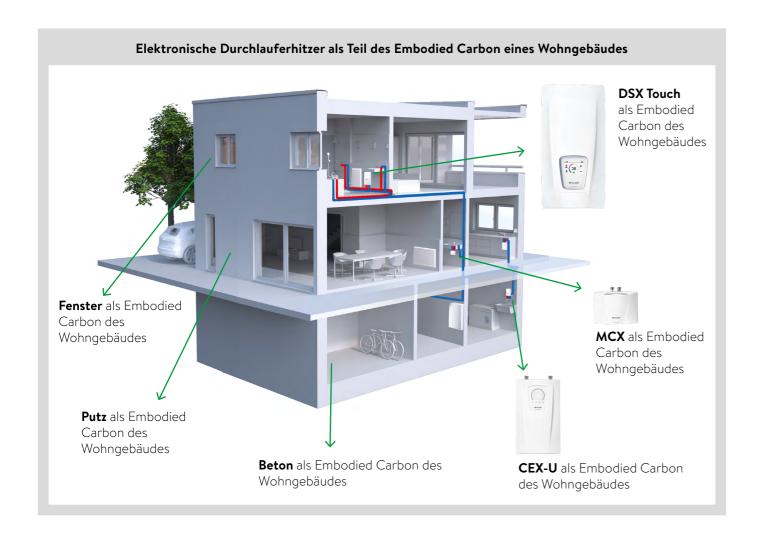
- > Cradle-to-Gate: Erfasst Emissionen von der Rohstoffgewinnung bis zum Verlassen des Produktionswerks
- > Cradle-to-Gate mit Phase der Nutzung: Berücksichtigt den gesamten Lebenszyklus außer Entsorgung
- > Cradle-to-Grave: Berücksichtigt den gesamten Lebenszyklus, einschließlich Nutzung und Entsorgung

2.2 EMBODIED CARBON UND OPERATIONAL CARBON

Bei der Betrachtung der Klimawirkung von Gebäuden wird oft zwischen zwei Konzepten unterschieden:

> Embodied Carbon (nach WGBC):

Emissionen, die während der Lebenszyklusphasen von Baumaterialien entstehen (Rohstoffgewinnung, Herstellung, Transport, Installation und Entsorgung).


> Operational Carbon:

Emissionen, die während der Nutzung eines Gebäudes entstehen, beispielsweise durch Heizen, Kühlen oder Beleuchtung.

Der **Embodied Carbon Footprint** konzentriert sich ausschließlich auf die "eingebetteten" Emissionen und stellt somit einen Teilaspekt des umfassenderen CO₂-Fußabdrucks dar.

Embodied Carbon (Eingebettete Emissionen nach WGBC)						
Vorgelagerter Kohlenstoff						
Produktphase	Versorgung mit	Rohstoffen		Transpo	ort	Herstellung
Phase des Bauprozesses	Transp	Construction / Installation			llation	
Eingebettete Emissionen						
Nutzungsphase	Nutzung	Wartung	Rep	aratur	Renovierung	Austausch
End-of-Life-Phase						
End-of-Life-Phase	Rückbau/Abriss	Transp	oort	Abfall	verarbeitung	Entsorgung

 $6 ag{7}$

2.3 GLOBAL WARMING POTENTIAL (GWP)

Einige Treibhausgase wie Kohlendioxid (CO_2) verbleiben über Jahrhunderte in der Atmosphäre, während andere, wie Methan (CH_4), nach wenigen Jahren wieder abgebaut werden. Die Wirkung dieser Gase auf das Klima variiert je nach ihrer Fähigkeit, Wärmestrahlung zu absorbieren oder zu reflektieren.

Das Global Warming Potential (Kurz: GWP; Erderwärmungspotenzial, dt.) ermöglicht die Vergleichbarkeit der Klimawirkung verschiedener THG, indem deren Effekt über einen festgelegten Zeitraum (z.B. 20, 100 oder 500 Jahre) in Relation zu CO₂ gesetzt wird. Diese Umrechnung in Kohlendioxid-Äquivalente (CO₂e) schafft eine einheitliche Basis für die Bewertung und Berichterstattung nationaler THG-Emissionen.

Die Angabe der Gesamtemissionen als CO_2 e erleichtert die Definition und Vergleichbarkeit internationaler Reduktionsziele und -verpflichtungen. Sie bildet somit eine zentrale Grundlage für die globale Klimapolitik.

Zu den Treibhausgasen zählt man, gemäß des Kyoto Protokolls (2005)²:

- > Kohlendioxid (CO₂)
- > Methan (CH₄)
- > Lachgas (N₂O)
- > Schwefelhexafluorid (SF₆)
- > Teilhalogenierte Fluorkohlenwasserstoffe (HFKW)
- > Perfluorierte Kohlenwasserstoffe (FKW)

2.4 ENVIRONMENTAL PRODUCT DECLARATION (EPD)

Die Environmental Product Declaration (EPD) ist ein standardisiertes Dokument, das die Umweltauswirkungen eines Produkts entlang seines Lebenszyklus bewertet. Obwohl wir keine offizielle EPD erstellen, zeigen Überschneidungen zu unserem **PCF-Ansatz**, dass auch wir:

- > die Klimawirkung (GWP) als zentralen Umweltindikator analysieren,
- > den gesamten Lebenszyklus eines Produkts betrachten (Cradle-to-Grave)

EPDs gehen jedoch über den PCF hinaus, indem sie weitere Umweltaspekte wie Ressourcenverbrauch und Bodenbelastung umfassen. Unser Fokus liegt klar auf der Klimabilanzierung, die eine fundierte Grundlage für die Entwicklung nachhaltiger Produkte schafft.

3. Unsere Analyse und Methodik

Im Nachfolgenden werden die CO₂-Fußabdrücke ausgewählter Referenzprodukte vorgestellt, die aufgrund verschiedener Kriterien eine erhöhte Wichtigkeit in Bezug auf ihre Umweltbilanz darstellen.

Dadurch können die jeweiligen Berechnungsergebnisse aufgrund der Komplexität der betrachteten Produkte als Maximalwerte für die jeweilige Geräteserie verstanden werden und somit auch die CO₂-Fußabdrücke der Geräte abgeleitet werden, die kein Bestandteil dieser Erhebung sind.

Zu den Kriterien zählen unter anderem:

- > Eine hohe Marktdurchdringung
- > Ein erhöhter Materialeinsatz im Vergleich zu anderen Geräten der jeweiligen Serie

Beispiel: Es wird der PCF für den hydraulischen Kleindurchlauferhitzer MBH 4 benötigt. Da in der vorliegenden Erhöhung lediglich der Fußabdruck des elektronischen Kleindurchlauferhitzers MCX3 erläutert wird, der durch zusätzliche Bauteile einen höheren Material- und Fertigungsaufwand aufweist, kann für das MBH 4 von einem Richtwert < 26 kg $\rm CO_2e^*$ ausgegangen werden.

^{*} Cradle-to-Gate

3.1 CUT-OFF-ANSATZ

Für die Umweltbilanz der betrachteten Geräte wurde die Entsorgungsphase gemäß dem international anerkannten Cut-off-Systemmodell durchgeführt. Dieser Ansatz folgt dem Prinzip, dass Recyclingvorteile dem Folgeprodukt gutgeschrieben werden und nicht dem Produkt, das das Recyclingmaterial abgibt.

Wer Recyclingmaterial verwendet, übernimmt dessen Umweltauswirkungen. Wer Recyclingmaterial abgibt, erhält keine Gutschrift.

Inwieweit sich der Ansatz auf die Emissionen der einzelnen Lebenswegphasen auswirkt, wird in den folgenden Kapiteln erläutert.

3.2 LEBENSWEGPHASEN

Unsere Klimabilanzierung berücksichtigt die folgenden Lebenszyklusphasen:

Cradle-to-Grave					
	Beginn des Abschnitts	Ende des Abschnitts	Bestandteil der Erhebung		
Rohstoffe und Vorprodukte	Entnahme von Rohstoffen aus der Umwelt Produktion von Vorprodukten, inklusive Transportwege, die in den vorgelagerten Prozessen anfallen	Rohstoffe/ Vorprodukte erreichen die Produktionsstätte der CLAGE GmbH	Ja		
Produktion	Rohstoffe und Vorprodukte gehen in der CLAGE GmbH ein	Erzeugnis verlässt die Produktionsstätte der CLAGE GmbH	Ja		
Distribution und Lagerung	Erzeugnis wird eingelagert	Erzeugnis geht in den Besitz des Kunden	Ja		
Nutzung	Nutzer nimmt das Produkt in seinen Besitz	Nutzer gibt das Produkt zur Entsorgung ab	Ja		
End-of-Life	Nutzer gibt das Produkt ab	Rückführung in die Ökosphäre / Eintritt in einen anderen Produktlebensweg	Ja		

Mit diesem Ansatz schaffen wir eine fundierte Grundlage für die Reduktion von Emissionen und die Entwicklung nachhaltiger Produkte und Prozesse.

3.2.1 ROHSTOFFGEWINNUNG UND VORVERARBEITUNG

Um eine verlässliche und nachvollziehbare THG-Bilanz zu gewährleisten, orientiert sich das nachfolgende Abschneide-kriterium an der PAS 2050:2011:

Komponenten mit unbekannter Materialzusammensetzung und einem Masse- oder Emissionsanteil unter 1 % werden nicht berücksichtigt. Beim Produkt "DSX Touch" betrifft dies < 0,1 % des Gesamtgewichts und der Emissionen. Bei allen weiteren Geräten war eine Anwendung des Abschneidekriteriums nicht notwendig.

In unseren Geräten sind sowohl Primär- als auch Recyclingmaterialien zu finden, welche sich durch Herstellungs- und Aufbereitungsverfahren unterscheiden. Der Cut-off-Ansatz berücksichtigt die relevanten Unterschiede in der Umweltbilanzierung:

Allokation

Die Allokation wird durch die Verwendung des Cut-off-Ansatzes vorgenommen. Hintergrund der Verwendung ist, dass keine ausreichenden Informationen seitens der Zulieferer und deren Zulieferern vorhanden sind und dadurch eine Aufteilung in mehrere Einzelprozesse bei der Herstellung von Vor- und Zwischenprodukten nicht oder nur bedingt umzusetzen ist.

3.2.2 PRODUKTION

In der Lebenswegphase Produktion stehen wir vor der Herausforderung, einige Emissionsquellen nicht unmittelbar und vollständig vermeiden zu können, da dies langfristige und kontinuierliche Optimierungen erfordert. Dennoch minimieren wir die Emissionen, die durch die Herstellung unserer Produkte entstehen, bereits heute durch den Einsatz von Ökostrom so weit wie möglich.

Die verbleibenden Emissionen gleichen wir durch die Unterstützung zertifizierter Klimaschutzprojekte aus. Diese Projekte fördern nicht nur die Reduktion von Treibhausgasen, sondern tragen auch zum Erhalt der biologischen Vielfalt bei.

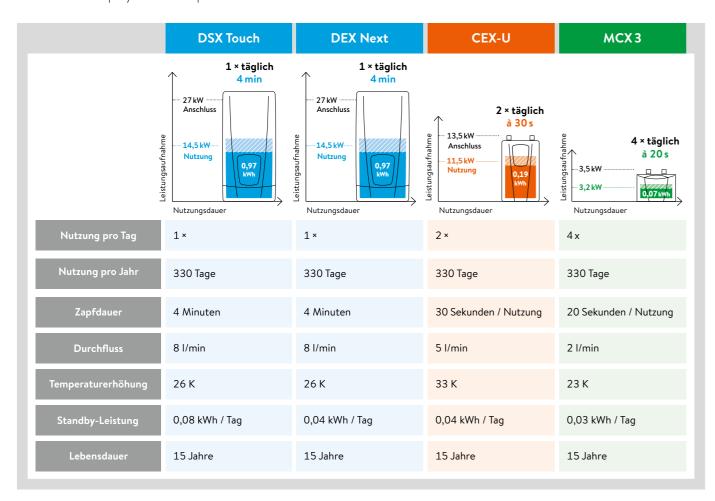
Klimabilanz der CLAGE GmbH:				
Wir haben unsere CO₂-Emissionen seit dem Jahr 2015 um 61% reduziert	Vermeiden und reduzieren			
Was nicht reduziert werden kann, decken wir durch erneuerbare Energien (Ökostrom-Vertrag seit 2019)	Erneuerbare Energien einsetzen			
Die CO ₂ -Emissionen, die wir aktuell nicht einsparen können, kompensieren wir seit dem Jahr 2021 durch ein zertifiziertes Klimaschutzprojekt	Kompensieren			

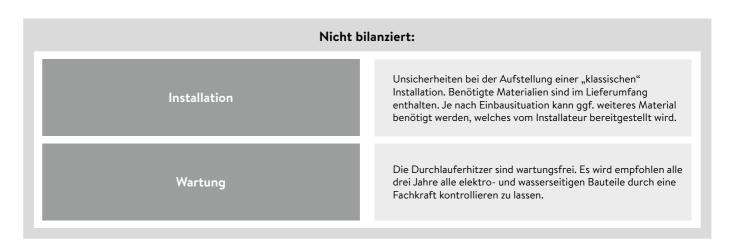
³ https://ecoinvent.org/the-ecoinvent-database/system-models/#!/allocation-cut-off (21.09.2023)

3.2.3 DISTRIBUTION UND LAGERUNG

Die Klimabilanzierung der Lebenszyklusphase Distribution und Lagerung wurde auf Basis von Echtdaten unseres externen Dienstleisters durchgeführt. Dabei wurden die THG-Emissionen für die jeweiligen Verpackungseinheiten erfasst und anschließend auf eine standardisierte Mengeneinheit (= 1 Stück) umgerechnet.

3.2.4 NUTZUNG

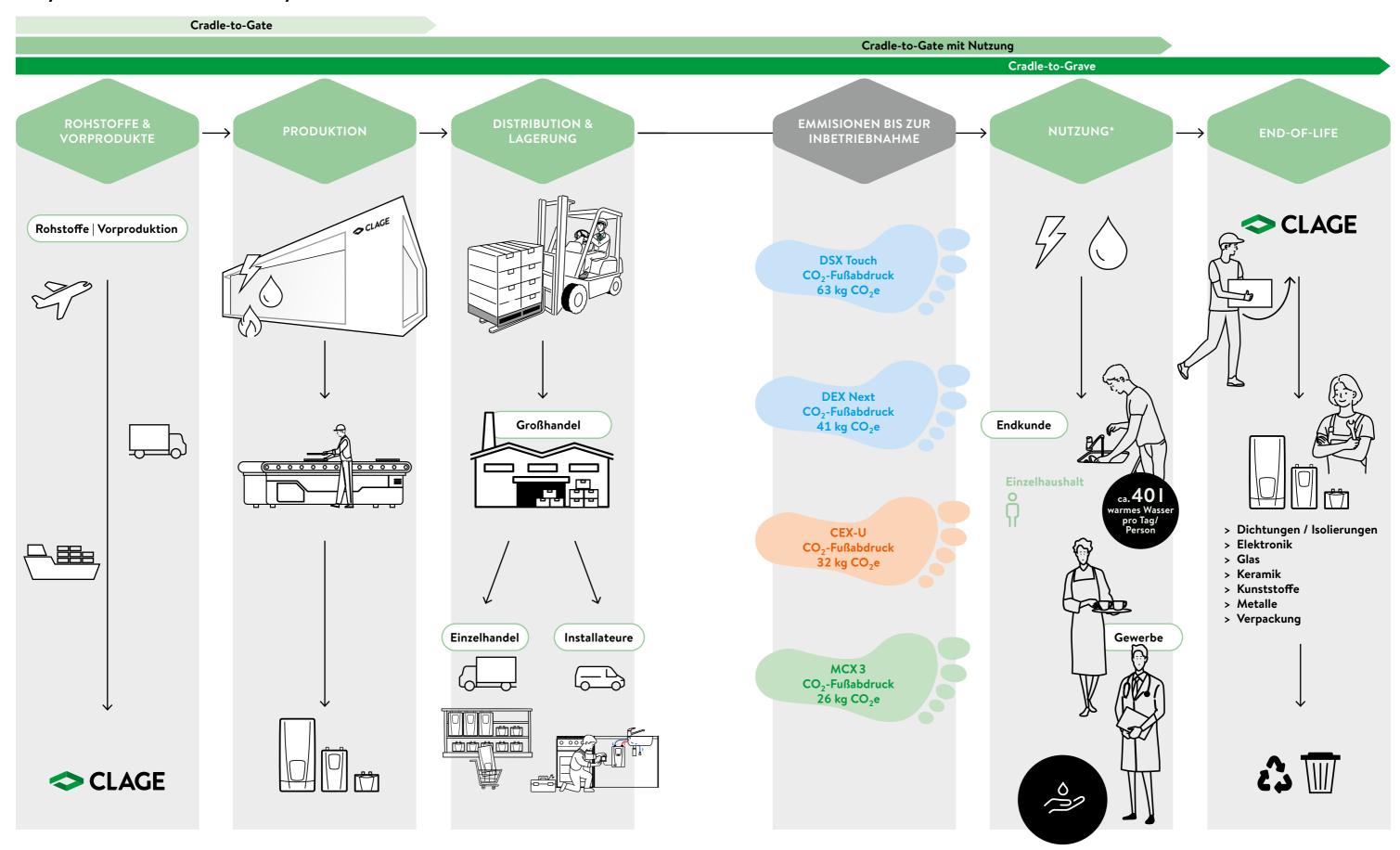

Die Phase der Nutzung bezieht sich auf die in unserem <u>Warmwasser-Guide</u> aufgestellten Use Cases. Diese leiten sich aus Erfahrungsberichten, Branchendurchschnitten und Empfehlungen ab.


Je nach Leistung kann ein Durchlauferhitzer mehrere Entnahmestellen versorgen – etwa Dusche, Badewanne und Waschbecken im Bad. Da die Nutzung je nach Einbausituation variiert, wurden für die Bilanzierung der Nutzungsphase folgende Annahmen getroffen:

- > Die Nutzung bezieht sich auf einen Anwender (wenn mehrere Personen in einem Haushalt wohnen, muss das Ergebnis mit der Anzahl der Personen multipliziert werden)
- > DX-Gerät für die Warmwasserversorgung einer Dusche
- > CX-Gerät für die Warmwasserversorgung einer Küchenspüle
- > MX-Gerät für die Warmwasserversorgung eines Handwaschbeckens

Der Bilanzzeitraum bezieht sich auf die Lebensphase der Nutzung, welche in der in der Praxis je nach Gebrauch variieren kann und die folgenden Faktoren Einfluss nehmen können:

- > Regionale Wasserhärte am Installationsort
- > Anzahl der Zapfzyklen und Zapfdauer


In unseren Geräten befinden sich sowohl Materialien, die recycelt werden können (recyclingfähiges Material), als auch solche, die am Ende ihres Lebenswegs (EoL-Material) entsorgt werden müssen. Der Cut-off-Ansatz berücksichtigt die Unterschiede in der Umweltbilanzierung wie folgt:

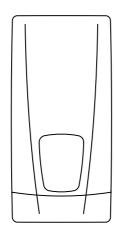
3.2.5 ENTSORGUNG/ RECYCLING/ END-OF-LIFE (EOL)

Die CLAGE GmbH bietet ihren Kunden die Möglichkeit, Altgeräte fachgerecht zurückzugeben. Dieses Angebot wird häufig genutzt und stellt sicher, dass die Entsorgung ordnungsgemäß erfolgt. Die getroffenen Annahmen zur EoL-Bilanzierung basieren daher auf diesem Rücknahmeangebot.

4. Systemfließbild Produkt Lebenszyklus

4.1 CO₂-FUSSABDRÜCKE ENTLANG DES LEBENSZYKLUS

	Rohstoffe / Vorprodukte	Produktion	Distribution / Lagerung	Nutzung 1 Jahr / 15 Jahre	End-of-Life
DSX Touch	60,62	1,60	1,06	136 / 2.039	8,03
DEX Next	38,89	1,1kg	0,99	130 / 1.946	6,94
CEX-U	29,70	1,30	0,58	30 / 454	4,84
мсх з	25,01	0,97	0,34	14 / 215	2,47



Produktvorstellungen >

5. DSX Touch

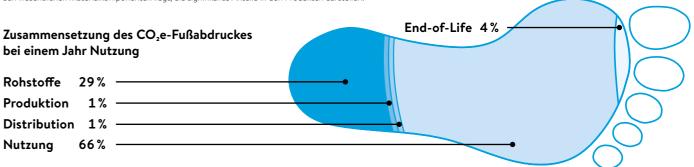
5.1 PRODUKTVORSTELLUNG

Vollelektronisch geregelter Hightech-Durchlauferhitzer mit Echtglas-Touchdisplay und Bluetooth-Fernbedienung zur komfortablen und sparsamen Warmwasserversorgung einer oder mehrerer Entnahmestelle(n). Mit dem Multiple Power System MPS® wird die maximale Leistungsaufnahme bei der Installation festgelegt: 18, 21, 24 oder 27 kW.

S		<u> </u>	÷
~	//:::	$\overline{}$	

	T :::: (-) U !!!			
Energieeffizienzklasse A (Skala: A+ bis F)	DSX Touch (/ DSX 1	Touch Black Edition	•
Zulässiger Betriebsüberdruck [MPa (bar)]:	1 (10) 1)			
Wasseranschlüsse (Schraubanschlüsse):	G1/2"			
Warmwasserleistung bei $\Delta t = 28 \mathrm{K}^{2)3)4)}$ [I/min]:	9,2	10,7	12,3	13,8
Einschaltwassermenge / Max. Durchflussmenge [I/min]:	1,5 / automatisc	h ⁵⁾		
Nennleistung [kW]:	18	21	24	27
Nennspannung [3~/PE 400 V AC]:	Festanschluss			
Nennstrom ³⁾ [A]:	26	30	35	39
Erforderlicher Kabelquerschnitt ³⁾ [mm ²]:	4,0	4,0	6,0	6,0
Prüfzeichen VDE GS & EMV / Schutzart:	✓ / IP 25			
Spezifischer Wasserwiderstand bei 15 °C [Ω cm] \geq :	1100			
Nenninhalt [Liter]:	0,4			
Gewicht mit Wasserfüllung [kg]:	ca. 4,5			
Abmessungen (Höhe × Breite × Tiefe) [cm]:	46,8 × 23,9 × 9,6	5		
	<u> </u>			

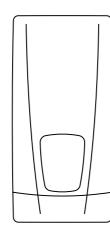
¹⁾ Auch für drucklosen Betrieb zugelassen 2) Temperaturerhöhung von z.B. 12 °C auf 40 °C 3) Je nach eingestellter Anschlussleistung 4) Mischwasser 5) Abhängig vom Leitungsdruck, gewählter Temperatur und Zulauftemperatur


5.2 ANALYSEEINHEIT UND FUNKTIONELLE EINHEIT

Die Analyseeinheit ist ein vollelektronisch geregelter Durchlauferhitzer zur komfortablen und sparsamen Warmwasserversorgung einer Entnahmestelle. Mit dem Multiple Power System MPS® wird die maximale Leistungsaufnahme bei der Installation auf 27 kW festgelegt. Der moderne vollelektronisch geregelte Durchlauferhitzer misst stetig die Einlauf- und Auslauftemperatur sowie die Durchflussmenge. In Abhängigkeit zur eingestellten Solltemperatur regelt das Gerät die Leistungsaufnahme bedarfsgerecht, sodass er im vorliegenden Nutzungsprofil eine Leistung von 14,5 kW benötigt.

5.3 MATERIALDEKLARATION

Werkstoff	Gewicht in kg	Masseanteil in %
Kunststoff ABS	1,6044	25,41%
Papier und Pappe	1,3667	21,64%
Kupfer	0,8237	13,04%
Elektronik Bauteil	0,4987	7,90%
Kunststoff PPE	0,4928	7,80%
Glas	0,3732	5,91%
Eisen	0,3472	5,50%
Kunststoff PA	0,2401	3,80%
Zink	0,2057	3,26%
Synthesekautschuk	0,1194	1,89%
Nickel	0,0522	0,83%
Kunststoff PE	0,0283	0,45%
Alkaline-Batterie	0,0220	0,35%
Chrom	0,0220	0,35%
Leiterplatte	0,0204	0,32%
Blei	0,0096	0,15%
Klebstoffe	0,0095	0,15%
Kunststoff PBT	0,0080	0,13%
Kunststoff PVC	0,0080	0,13%
Aluminium	0,0079	0,13%
Silikon	0,0079	0,12%
Sauerstoff	0,0068	0,11%
Kunststoff PPS	0,0059	0,09%
Kunststoff PP	0,0041	0,06%
Zellulosefasern	0,0039	0,06%
Zinn	0,0034	0,05%
Kunststoff PMMA	0,0033	0,05%
Kunststoff POM	0,0033	0,05%
Kunststoff PTFE	0,0029	0,05%
Silizium	0,0020	0,03%
Kunststoff PC	0,0019	0,03%
Kunststoff PET	0,0019	0,03%
Naturkautschuk	0,0019	0,03%
Mangan	0,0018	0,03%
Neodym	0,0018	0,03%


In unserer aktuellen Materialdeklaration werden ausschließlich Bestandteile aufgeführt, die ein Mindestgewicht von einem Gramm erreichen. Dies bedeutet, dass Bestandteile, deren Gewicht unter 1 Gramm liegen, in der Auflistung nicht berücksichtigt werden. Diese Regelung dient der Vereinfachung des Dokumentationsprozesses und stellt sicher, dass der Fokus auf den wesentlichen Materialkomponenten liegt, die signifikante Anteile in den Produkten darstellen.

6. DEX Next

6.1 PRODUKTVORSTELLUNG

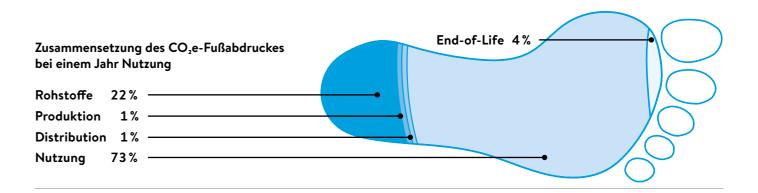
Elektronisch geregelter Komfortdurchlauferhitzer mit Echtglas-E-Paper-Display und Sensortasten für hohen Bedienkomfort zur komfortablen und sparsamen Warmwasserversorgung einer oder mehrerer Entnahmestelle(n). Mit dem Multiple Power System MPS® wird die maximale Leistungsaufnahme bei der Installation festgelegt: 18, 21, 24 oder 27 kW.

	♦ ★ ♦
Energieeffizienzklasse A (Skala: A+ bis F)	DEX Next (18, 21, 24 oder 27kW einstellbar)
Zulässiger Betriebsüberdruck [MPa (bar)]:	1 (10) 1)
Wasseranschlüsse (Schraubanschlüsse):	G1/2"
Warmwasserleistung bei $\Delta t = 28 \mathrm{K}^{2) 3)}$ [I/min]:	9,2 4) 10,7 4) 12,3 4) 13,8 4)
Einschaltwassermenge / Max. Durchflussmenge [I/min]:	1,5 / automatisch ⁵⁾
Nennleistung bei 400 V [kW]:	18 21 24 27
Nennspannung [3~/PE 400 V AC]:	Festanschluss
Nennstrom ³⁾ [A]:	26 30 35 39
Erforderlicher Kabelquerschnitt ³⁾ [mm ²]:	4,2 4,0 6,0 6,0
Prüfzeichen VDE GS & EMV / Schutzart:	✓ / IP 25
Spezifischer Wasserwiderstand bei 15 °C [Ω cm] \geq :	1100
Nenninhalt [Liter]:	0,4
Gewicht mit Wasserfüllung [kg]:	ca. 4,5

46,8 × 23,9 × 9,6

Abmessungen (Höhe × Breite × Tiefe) [cm]:

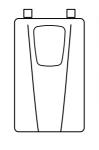
1) Auch für drucklosen Betrieb zugelassen 2) Temperaturerhöhung von z.B. 12 °C auf 40 °C 3) Je nach eingestellter Anschlussleistung 4) Mischwasser 5) Durchfluss begrenzt, für optimale Temperaturerhöhung


6.2 ANALYSEEINHEIT UND FUNKTIONELLE EINHEIT

Die Analyseeinheit ist ein elektronisch geregelter Durchlauferhitzer zur komfortablen und sparsamen Warmwasserversorgung einer Entnahmestelle. Mit dem Multiple Power System MPS® wird die maximale Leistungsaufnahme bei der Installation auf 27 kW festgelegt. Der moderne elektronisch geregelte Durchlauferhitzer misst stetig die Einlauf- und Auslauftemperatur sowie die Durchflussmenge. In Abhängigkeit zur eingestellten Solltemperatur regelt das Gerät die Leistungsaufnahme bedarfsgerecht, sodass er im vorliegenden Nutzungsprofil eine Leistung von 14,5 kW benötigt.

6.3 MATERIALDEKLARATION

Kunststoff ABS 1,3102 22,85% Papier und Pappe 1,236 19,59% Kurfer 0,718 13,46% Leiterplatte 0,5610 9,78% Kunststoff PPE 0,4662 8,13% Glas 0,3303 5,76% Eisen 0,2705 5,18% Kunststoff PA 0,2265 3,89% Elektronik Bauteil 0,2206 3,85% Zink 0,0056 3,85% Syntheskautschuk 0,0931 1,62% Nickel 0,0203 0,35% Kunststoff PE 0,0116 0,22% Bie 0,0116 0,22% Blei 0,0094 0,14% Aluminium 0,0079 0,14% Silikon 0,0079 0,14% Kunststoff PC 0,0047 0,08% Kunststoff PCM 0,0042 0,07% Kunststoff PDM 0,0025 0,005% Kunststoff PTF 0,0027 0,05% Kunststoff PTF 0,002	Werkstoff	Gewicht in kg	Masseanteil in %
Kupfer 0,7718 13,46% Leiterplatte 0,5610 9,78% Kunststoff PPE 0,4662 8,13% Glas 0,3303 5,76% Eisen 0,2970 5,18% Kunststoff PA 0,2285 3,98% Elektronik Bauteil 0,2006 3,85% Zink 0,005 3,58% Synthesekautschuk 0,0931 1,62% Nickel 0,003 0,35% Kunststoff PE 0,0194 0,34% Chrom 0,0116 0,20% Blei 0,007 0,17% Klebstoffe 0,0097 0,14% Silikon 0,0079 0,14% Sauerstoff 0,0079 0,14% Sauerstoff PC 0,004 0,07% Kunststoff PVC 0,004 0,07% Kunststoff PVC 0,004 0,07% Kunststoff PDM 0,002 0,05% Kunststoff PDM 0,002 0,05% Kunststoff PPS 0,002	Kunststoff ABS	1,3102	22,85%
Leiterplatte 0,5610 9,78% Kunststoff PPE 0,4662 8,13% Glas 0,3303 5,76% Eisen 0,2970 5,18% Kunststoff PA 0,2285 3,98% Elektronik Bauteil 0,2206 3,85% Zink 0,2056 3,58% Synthesekautschuk 0,0931 1,62% Nickel 0,0031 0,35% Kunststoff PE 0,0116 0,20% Chrom 0,0116 0,20% Blei 0,0097 0,17% Klebstoffe 0,0094 0,16% Aluminium 0,0079 0,14% Sauerstoff 0,0068 0,17% Kunststoff PC 0,0047 0,08% Kunststoff PC 0,0047 0,08% Kunststoff PDM 0,0035 0,06% Kunststoff PDM 0,0035 0,06% Kunststoff PTF 0,0027 0,05% Kunststoff PFF 0,0022 0,04% Kunststoff PS 0,	Papier und Pappe	1,1236	19,59%
Kunststoff PPE 0,4662 8,13% Glas 0,3303 5,76% Eisen 0,2970 5,18% Kunststoff PA 0,2285 3,98% Elektronik Bauteil 0,2066 3,85% Zink 0,2056 3,58% Synthesekautschuk 0,0931 1,62% Nickel 0,0203 0,35% Kunststoff PE 0,0194 0,34% Chrom 0,0116 0,20% Blei 0,0097 0,17% Klebstoffe 0,0094 0,16% Aluminium 0,0079 0,14% Silikon 0,0079 0,14% Suerstoff 0,0047 0,08% Kunststoff PC 0,0047 0,08% Kunststoff POM 0,0035 0,06% Kunststoff POM 0,0035 0,06% Kunststoff PPT 0,0027 0,05% Kunststoff PPT 0,0027 0,05% Kunststoff PPS 0,0022 0,04% Zellulosefasern 0,001	Kupfer	0,7718	13,46%
Clas 0,3303 5,76% Eisen 0,2970 5,18% Kunststoff PA 0,2285 3,98% Elektronik Bauteil 0,2206 3,85% Zink 0,2056 3,58% Zynthesekautschuk 0,0931 1,62% Nickel 0,0203 0,35% Kunststoff PE 0,0194 0,34% Chrom 0,0116 0,20% Blei 0,0097 0,17% Klebstoffe 0,0094 0,14% Salikon 0,0079 0,14% Suerstoff 0,0079 0,14% Suerstoff PC 0,0047 0,08% Kunststoff PC 0,0047 0,08% Kunststoff PNC 0,0040 0,07% Kunststoff PBT 0,0027 0,05% Zinn 0,0027 0,05% Kunststoff PBT 0,0027 0,05% Zinn 0,0026 0,04% Kunststoff PPS 0,0022 0,04% Xunststoff PS 0,0015	Leiterplatte	0,5610	9,78%
Eisen 0,2970 5,18% Kunststoff PA 0,2285 3,98% Elektronik Bauteil 0,2206 3,85% Zink 0,2056 3,58% Synthesekautschuk 0,0931 1,62% Nickel 0,0203 0,35% Kunststoff PE 0,0194 0,34% Chrom 0,0116 0,20% Blei 0,0097 0,17% Klebstoffe 0,0094 0,16% Aluminium 0,0079 0,14% Silikon 0,0079 0,14% Suerstoff PC 0,004 0,01% Kunststoff PC 0,004 0,07% Kunststoff PVC 0,004 0,07% Kunststoff PDM 0,003 0,06% Kunststoff PBT 0,002 0,05% Kunststoff PFF 0,002 0,04% Kunststoff PFS 0,002 0,04% Cullulosefasern 0,001 0,04% Naturaluschuk 0,0018 0,03% Kunststoff PF 0,	Kunststoff PPE	0,4662	8,13%
Kunststoff PA 0,2285 3,98% Elektronik Bauteil 0,2206 3,85% Zink 0,2056 3,58% Synthesekautschuk 0,0931 1,62% Nickel 0,0203 0,35% Kunststoff PE 0,0194 0,34% Chrom 0,0116 0,20% Blei 0,0097 0,17% Klebstoffe 0,0094 0,16% Aluminium 0,0079 0,14% Silikon 0,0079 0,14% Suerstoff 0,004 0,02% Kunststoff PC 0,004 0,07% Kunststoff PVC 0,004 0,07% Kunststoff PVG 0,0035 0,06% Kunststoff PSTE 0,0027 0,05% Kunststoff PFS 0,0022 0,04% Kunststoff PPS 0,0015 0,04% Kunststoff PS 0,0015 0,03% Kunststoff PS 0,0015 0,03% Kunststoff PS 0,0015 0,03% Kunststoff PS	Glas	0,3303	5,76%
Elektronik Bauteil 0,2206 3,85% Zink 0,2056 3,58% Synthesekautschuk 0,0931 1,62% Nickel 0,2023 0,35% Kunstsoff PE 0,0194 0,34% Chrom 0,0116 0,20% Blei 0,0097 0,17% Klebstoffe 0,0094 0,16% Aluminium 0,0079 0,14% Sauerstoff 0,008 0,12% Kunststoff PC 0,0047 0,08% Kunststoff PVC 0,0040 0,07% Kunststoff PDM 0,0035 0,06% Kunststoff PBT 0,0027 0,05% Kunststoff PFF 0,0027 0,05% Kunststoff PPS 0,0026 0,04% Aluminum 0,0018 0,03% Kunststoff PS 0,0015 0,03% Kunststoff PS 0,0015 0,03% Kunststoff PS 0,0015 0,03% Kunststoff PS 0,0015 0,03% Kunststoff PS	Eisen	0,2970	5,18%
Zink 0,2056 3,58% Synthesekautschuk 0,0931 1,62% Nickel 0,0203 0,35% Kunststoff PE 0,0194 0,34% Chrom 0,0116 0,20% Blei 0,0097 0,17% Klebstoffe 0,0094 0,16% Aluminium 0,0079 0,14% Silikon 0,0079 0,14% Sauerstoff 0,008 0,12% Kunststoff PC 0,0047 0,08% Kunststoff PDM 0,0040 0,07% Kunststoff PDM 0,0027 0,05% Kunststoff PTF 0,0027 0,05% Kunststoff PTF 0,0027 0,05% Kunststoff PPS 0,0022 0,04% Kunststoff PPS 0,0021 0,04% Kunststoff PS 0,0015 0,03% Kunststoff PF 0,0015 0,03% Kunststoff PF 0,0015 0,02% Kunststoff PS 0,0015 0,02% Kunststoff PS	Kunststoff PA	0,2285	3,98%
Synthesekautschuk 0,0931 1,62% Nickel 0,0203 0,35% Kunststoff PE 0,0194 0,34% Chrom 0,0116 0,20% Blei 0,0097 0,17% Klebstoffe 0,0094 0,16% Aluminum 0,0079 0,14% Silikon 0,0079 0,14% Sauerstoff 0,0068 0,12% Kunststoff PC 0,0047 0,08% Kunststoff PVC 0,0040 0,07% Kunststoff PBT 0,002 0,05% Kunststoff PBT 0,0027 0,05% Kunststoff PFS 0,002 0,04% Kunststoff PPS 0,002 0,04% Kunststoff PS 0,001 0,003 Kunststoff PS 0,001 0,003 Kunststoff PS 0,001 0,003 Kunststoff PS 0,001 0,003 Kunststoff PS 0,001 0,002 Kunststoff PS 0,001 0,003 Kunststoff PS	Elektronik Bauteil	0,2206	3,85%
Nickel 0,0203 0,35% Kunststoff PE 0,0194 0,34% Chrom 0,0116 0,20% Blei 0,0097 0,17% Klebstoffe 0,0094 0,16% Aluminium 0,0079 0,14% Silikon 0,0079 0,14% Sauerstoff 0,0068 0,12% Kunststoff PC 0,0047 0,08% Kunststoff PVC 0,0040 0,07% Kunststoff PBT 0,0027 0,05% Kunststoff PBT 0,0027 0,05% Kunststoff PFF 0,0027 0,05% Zellulosefasern 0,0022 0,04% Naturkautschuk 0,0018 0,03% Kunststoff PS 0,0015 0,03% Kunststoff PET 0,0013 0,02% Silizium 0,0013 0,02%	Zink	0,2056	3,58%
Kunststoff PE 0,0194 0,34% Chrom 0,0116 0,20% Blei 0,0097 0,17% Klebstoffe 0,0094 0,16% Aluminium 0,0079 0,14% Silikon 0,0079 0,14% Sauerstoff 0,0068 0,12% Kunststoff PC 0,0047 0,08% Kunststoff PVC 0,0040 0,07% Kunststoff PBT 0,0027 0,05% Kunststoff PBT 0,0027 0,05% Kunststoff PPS 0,0026 0,04% Kunststoff PPS 0,0022 0,04% Alumination 0,0018 0,03% Kunststoff PS 0,0018 0,03% Kunststoff PS 0,0015 0,03% Kunststoff PET 0,0013 0,02% Silizium 0,0013 0,02%	Synthesekautschuk	0,0931	1,62%
Chrom 0,0116 0,20% Blei 0,0097 0,17% Klebstoffe 0,0094 0,16% Aluminium 0,0079 0,14% Silikon 0,0079 0,14% Sauerstoff 0,0068 0,12% Kunststoff PC 0,0047 0,08% Kunststoff PVC 0,0040 0,07% Kunststoff PBT 0,0027 0,05% Kunststoff PBT 0,0027 0,05% Xunststoff PFF 0,0027 0,05% Zinn 0,0026 0,04% Kunststoff PPS 0,0022 0,04% Zellulosefasern 0,0021 0,04% Naturkautschuk 0,0018 0,03% Kunststoff PS 0,0015 0,03% Kunststoff PET 0,0013 0,02% Silizium 0,0013 0,02%	Nickel	0,0203	0,35%
Blei 0,0097 0,17% Klebstoffe 0,0094 0,16% Aluminium 0,0079 0,14% Silikon 0,0079 0,14% Sauerstoff 0,0068 0,12% Kunststoff PC 0,0047 0,08% Kunststoff PVC 0,0040 0,07% Kunststoff PDM 0,0035 0,06% Kunststoff PBT 0,0027 0,05% Kunststoff PTFE 0,0027 0,05% Zinn 0,0026 0,04% Kunststoff PPS 0,0022 0,04% Zellulosefasern 0,0021 0,04% Naturkautschuk 0,0018 0,03% Kunststoff PS 0,0015 0,03% Kunststoff PET 0,0013 0,02% Silizium 0,0013 0,02%	Kunststoff PE	0,0194	0,34%
Klebstoffe 0,0094 0,168 Aluminium 0,0079 0,14% Silikon 0,0079 0,14% Sauerstoff 0,0068 0,12% Kunststoff PC 0,0047 0,08% Kunststoff PVC 0,0040 0,07% Kunststoff PBT 0,0025 0,06% Kunststoff PFE 0,0027 0,05% Zinn 0,0026 0,04% Kunststoff PPS 0,0022 0,04% Xeunststoff PPS 0,0022 0,04% Naturkautschuk 0,0018 0,03% Kunststoff PS 0,0015 0,03% Kunststoff PET 0,0015 0,03% Kunststoff PET 0,0013 0,02%	Chrom	0,0116	0,20%
Aluminium 0,0079 0,14% Silikon 0,0079 0,14% Sauerstoff 0,0068 0,12% Kunststoff PC 0,0047 0,08% Kunststoff PVC 0,0040 0,07% Kunststoff PDM 0,0035 0,06% Kunststoff PBT 0,0027 0,05% Kunststoff PTFE 0,0027 0,05% Zinn 0,0026 0,04% Kunststoff PPS 0,0022 0,04% Zellulosefasern 0,0021 0,04% Naturkautschuk 0,0018 0,03% Kunststoff PS 0,0015 0,03% Kunststoff PFT 0,0013 0,02% Silizium 0,0013 0,02%	Blei	0,0097	0,17%
Silikon 0,0079 0,14% Sauerstoff 0,0068 0,12% Kunststoff PC 0,0047 0,08% Kunststoff PVC 0,0040 0,07% Kunststoff POM 0,0035 0,06% Kunststoff PBT 0,0027 0,05% Kunststoff PTFE 0,0027 0,05% Zinn 0,0026 0,04% Kunststoff PPS 0,0022 0,04% Zellulosefasern 0,0021 0,04% Naturkautschuk 0,0018 0,03% Kunststoff PS 0,0015 0,03% Kunststoff PET 0,0013 0,02% Silizium 0,0013 0,002%	Klebstoffe	0,0094	0,16%
Sauerstoff 0,0068 0,12% Kunststoff PC 0,0047 0,08% Kunststoff PVC 0,0040 0,07% Kunststoff POM 0,0035 0,06% Kunststoff PBT 0,0027 0,05% Kunststoff PTFE 0,0027 0,05% Zinn 0,0026 0,04% Kunststoff PPS 0,0022 0,04% Zellulosefasern 0,0021 0,04% Naturkautschuk 0,0018 0,03% Kunststoff PS 0,0015 0,03% Kunststoff PET 0,0013 0,02% Silizium 0,0013 0,02%	Aluminium	0,0079	0,14%
Kunststoff PC 0,0047 0,088 Kunststoff PVC 0,0040 0,078 Kunststoff POM 0,0035 0,068 Kunststoff PBT 0,0027 0,058 Kunststoff PTFE 0,0027 0,058 Zinn 0,0026 0,048 Kunststoff PPS 0,0022 0,048 Zellulosefasern 0,0021 0,048 Naturkautschuk 0,0018 0,038 Kunststoff PS 0,0015 0,038 Kunststoff PET 0,0013 0,028 Silizium 0,0024 0,0024	Silikon	0,0079	0,14%
Kunststoff PVC 0,0040 0,07% Kunststoff POM 0,0035 0,06% Kunststoff PBT 0,0027 0,05% Kunststoff PTFE 0,0027 0,05% Zinn 0,0026 0,04% Kunststoff PPS 0,0022 0,04% Zellulosefasern 0,0021 0,04% Naturkautschuk 0,0018 0,03% Kunststoff PS 0,0015 0,03% Kunststoff PET 0,0013 0,02% Silizium 0,0013 0,02%	Sauerstoff	0,0068	0,12%
Kunststoff POM 0,0035 0,06% Kunststoff PBT 0,0027 0,05% Kunststoff PTFE 0,0027 0,05% Zinn 0,0026 0,04% Kunststoff PPS 0,0022 0,04% Zellulosefasern 0,0021 0,04% Naturkautschuk 0,0018 0,03% Kunststoff PS 0,0015 0,03% Kunststoff PET 0,0013 0,02% Silizium 0,02% 0,02%	Kunststoff PC	0,0047	0,08%
Kunststoff PBT 0,0027 0,05% Kunststoff PTFE 0,0027 0,05% Zinn 0,0026 0,04% Kunststoff PPS 0,0022 0,04% Zellulosefasern 0,0021 0,04% Naturkautschuk 0,0018 0,03% Kunststoff PS 0,0015 0,03% Kunststoff PET 0,0013 0,02% Silizium 0,002% 0,02%	Kunststoff PVC	0,0040	0,07%
Kunststoff PTFE 0,0027 0,05% Zinn 0,0026 0,04% Kunststoff PPS 0,0022 0,04% Zellulosefasern 0,0021 0,04% Naturkautschuk 0,0018 0,03% Kunststoff PS 0,0015 0,03% Kunststoff PET 0,0013 0,02% Silizium 0,02% 0,02%	Kunststoff POM	0,0035	0,06%
Zinn 0,0026 0,04% Kunststoff PPS 0,0022 0,04% Zellulosefasern 0,0021 0,04% Naturkautschuk 0,0018 0,03% Kunststoff PS 0,0015 0,03% Kunststoff PET 0,0013 0,02% Silizium 0,002%	Kunststoff PBT	0,0027	0,05%
Kunststoff PPS 0,0022 0,04% Zellulosefasern 0,0021 0,04% Naturkautschuk 0,0018 0,03% Kunststoff PS 0,0015 0,03% Kunststoff PET 0,0013 0,02% Sillizium 0,0013 0,02%	Kunststoff PTFE	0,0027	0,05%
Zellulosefasern 0,0021 0,04% Naturkautschuk 0,0018 0,03% Kunststoff PS 0,0015 0,03% Kunststoff PET 0,0013 0,02% Silizium 0,0013 0,02%	Zinn	0,0026	0,04%
Naturkautschuk 0,0018 0,03% Kunststoff PS 0,0015 0,03% Kunststoff PET 0,0013 0,02% Silizium 0,0013 0,02%	Kunststoff PPS	0,0022	0,04%
Kunststoff PS 0,0015 0,03% Kunststoff PET 0,0013 0,02% Silizium 0,0013 0,02%	Zellulosefasern	0,0021	0,04%
Kunststoff PET 0,0013 0,02% Silizium 0,0013 0,02%	Naturkautschuk	0,0018	0,03%
Silizium 0,0013 0,02%	Kunststoff PS	0,0015	0,03%
	Kunststoff PET	0,0013	0,02%
Mangan 0,0011 0,02%	Silizium	0,0013	0,02%
	Mangan	0,0011	0,02%


In unserer aktuellen Materialdeklaration werden ausschließlich Bestandteile aufgeführt, die ein Mindestgewicht von einem Gramm erreichen. Dies bedeutet, dass Bestandteile, deren Gewicht unter 1 Gramm liegen, in der Auflistung nicht berücksichtigt werden. Diese Regelung dient der Vereinfachung des Dokumentationsprozesses und stellt sicher, dass der Fokus auf den wesentlichen Materialkomponenten liegt, die signifikante Anteile in den Produkten darstellen.

7. CEX-U

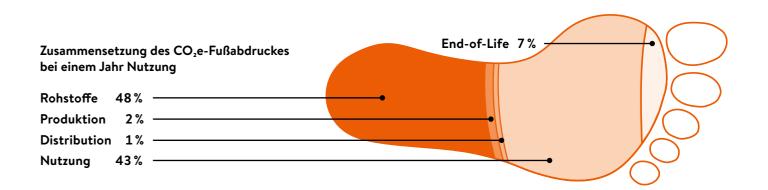
7.1 PRODUKTVORSTELLUNG

Elektronisch geregelter E-Kompakt-Durchlauferhitzer als Untertischgerät zur energieeffizienten Warmwasserversorgung von einer oder zwei Zapfstellen wie z. B. eine Küchenspüle oder zwei Waschbecken. Mit dem Multiple Power System MPS® wird die maximale Leistungsaufnahme bei der Installation festgelegt: 11 oder 13,5 kW.

r	\cap
\bigcirc	4 1

Energieeffizienzklasse A (Skala: A+ bis F)	CEX-U (11 oder 13,5 kW)		
Zulässiger Betriebsüberdruck [MPa (bar)]:	1 (10) 1)		
Wasseranschlüsse (Schraubanschlüsse):	G3/8"		
Warmwasserleistung bei $\Delta t = 33 \text{K}^{2)3)}$ [I/min]:	4,8	5,8 4)	
Einschaltwassermenge / Max. Durchflussmenge [I/min]:	2 / 5 5)	2 / 5 5)	
Nennleistung [kW]:	11	13,5	
Nennspannung [3~/PE 380 – 415 V AC]:	Festanschluss		
Nennstrom ³⁾ [A]:	16	20	
Erforderlicher Kabelquerschnitt ³⁾ [mm ²]:	1,5	2,5	
Prüfzeichen VDE GS & EMV / Schutzart:	✓ / IP 24		
Spezifischer Wasserwiderstand bei 15 °C [Ω cm] \geq :	1000		
Nenninhalt [Liter]:	0,3		
Gewicht mit Wasserfüllung [kg]:	ca. 2,7		
Abmessungen (Höhe × Breite × Tiefe) [cm]:	29,4 × 17,7 × 10,4		

¹⁾ Auch für drucklosen Betrieb zugelassen 2) Temperaturerhöhung von z.B. 12°C auf 45°C 3) Je nach eingestellter Anschlussleistung 4) Mischwasser 5) Durchfluss begrenzt, für optimale Temperaturerhöhung 6) Bezogen auf Nennspannung 230V bzw. 400V

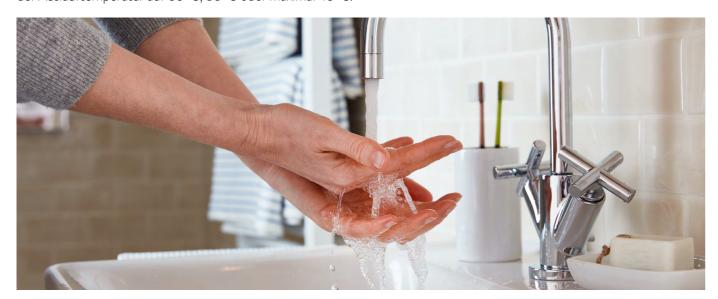

7.2 ANALYSEEINHEIT UND FUNKTIONELLE EINHEIT

Die Analyseeinheit ist ein elektronisch geregelter Untertischdurchlauferhitzer im Kompaktformat zur komfortablen und sparsamen Warmwasserversorgung einer Entnahmestelle. Mit dem Multiple Power System MPS® wird die maximale Leistungsaufnahme bei der Installation auf 13,5 kW festgelegt. Der moderne elektronisch geregelte Durchlauferhitzer misst stetig die Einlauf- und Auslauftemperatur sowie die Durchflussmenge. In Abhängigkeit zur eingestellten Solltemperatur regelt das Gerät die Leistungsaufnahme bedarfsgerecht, sodass er im vorliegenden Nutzungsprofil eine Leistung von 11,5 kW benötigt.

7.3 MATERIALDEKLARATION

Werkstoff	Gewicht in kg	Masseanteil in %
Kunststoff ABS	0,6920	21,01%
Papier und Pappe	0,6275	19,05%
Kunststoff PA	0,4508	13,69%
Kupfer	0,4475	13,59%
Glas	0,4292	13,03%
Eisen	0,1367	4,15%
Elektronik Bauteil	0,1207	3,66%
Zink	0,1101	3,34%
Kunststoff PVC	0,0895	2,72%
Synthesekautschuk	0,0408	1,24%
Nickel	0,0294	0,89%
Kunststoff PE	0,0217	0,66%
Chrom	0,0191	0,58%
Leiterplatte	0,0180	0,55%
Aluminium	0,0079	0,24%
Naturkautschuk	0,0078	0,24%
Sauerstoff	0,0068	0,21%
Silikon	0,0060	0,18%
Blei	0,0053	0,16%
Klebstoffe	0,0053	0,16%
Kunststoff PS	0,0040	0,12%
Kunststoff PBT	0,0037	0,11%
Kunststoff POM	0,0035	0,11%
Kunststoff PPS	0,0020	0,06%
Mangan	0,0017	0,05%
Zinn	0,0015	0,05%
Kunststoff PC	0,0013	0,04%
Molybdaen	0,0013	0,04%
Silizium	0,0012	0,04%

In unserer aktuellen Materialdeklaration werden ausschließlich Bestandteile aufgeführt, die ein Mindestgewicht von einem Gramm erreichen. Dies bedeutet, dass Bestandteile, deren Gewicht unter 1 Gramm liegen, in der Auflistung nicht berücksichtigt werden. Diese Regelung dient der Vereinfachung des Dokumentationsprozesses und stellt sicher, dass der Fokus auf den wesentlichen Materialkomponenten liegt, die signifikante Anteile in den Produkten darstellen.



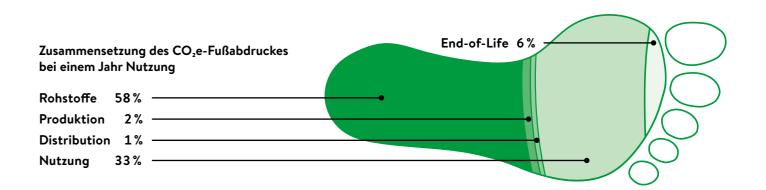
8. MCX3

8.1 PRODUKTVORSTELLUNG

Elektronisch geregelter Durchlauferhitzer im Miniformat zur energieeffizienten Versorgung eines Waschbeckens oder einer Teeküche. Die Heizleistung wird durch die Elektronik automatisch geregelt. Das sorgt für perfekte Warmwassertemperatur, ein Mischen mit kaltem Wasser ist nicht mehr nötig. Tastenbedienfeld mit farbigen LEDs zur Einstellung der Auslauftemperatur auf 35°C, 38°C oder maximal 45°C.

	÷
Energieeffizienzklasse A (Skala: A+ bis F)	MCX3
Zulässiger Betriebsüberdruck [MPa (bar)]:	1 (10) 1)
Wasseranschlüsse (Schraubanschlüsse):	G3/8"
Warmwasserleistung bei Δt = 25 K ²⁾ [I/min]:	2,0
Einschaltwassermenge / Max. Durchflussmenge ³⁾ [I/min]:	1,2 / 1,9
Nennleistung ⁴⁾ [kW]:	3,5
Nennspannung [1~ / N / PE 220 – 240 V AC]:	mit Stecker
Nennstrom ⁴⁾ [A]:	15
Erforderlicher Kabelquerschnitt [mm²]:	1,5
Prüfzeichen VDE GS & EMV / Schutzart:	✓ / IP 25
Spezifischer Wasserwiderstand bei 15 °C [Ωcm] ≥ :	1100
Nenninhalt [Liter]:	0,2
Gewicht mit Wasserfüllung [kg]:	ca. 1,5
Abmessungen (Höhe × Breite × Tiefe) [cm]:	13,5 × 18,6 × 8,7

¹⁾ Auch für drucklosen Betrieb zugelassen 2) Temperaturerhöhung von z.B. 15°C auf 40°C 3) Durchflussmenge begrenzt für optimale Temperaturerhöhung, durch Wassermengenjustage anpassbar 4) Bezogen auf Nennspannung 230 V bzw. 400 V


8.2 ANALYSEEINHEIT UND FUNKTIONELLE EINHEIT

Die Analyseeinheit ist ein elektronisch geregelter Durchlauferhitzer zur komfortablen und sparsamen Warmwasserversorgung einer Entnahmestelle mit einer Leistung von 3,5 kW. Der moderne elektronisch geregelte Durchlauferhitzer misst stetig die Einlauf- und Auslauftemperatur sowie die Durchflussmenge. In Abhängigkeit zur eingestellten Solltemperatur regelt das Gerät die Leistungsaufnahme bedarfsgerecht, sodass er im vorliegenden Nutzungsprofil eine Leistung von 3,2 kW benötigt.

8.3 MATERIALDEKLARATION

Werkstoff	Gewicht in kg	Masseanteil in %
Papier und Pappe	0,4100	20,63%
Kunststoff PPE	0,2933	14,76%
Kunststoff PS	0,2893	14,56%
Kupfer	0,2064	10,38%
Elektronik Bauteil	0,1810	9,11%
Glas	0,1441	7,25%
Eisen	0,0992	4,99%
Zink	0,0964	4,85%
Leiterplatte	0,0621	3,12%
Schutzkontaktstecker	0,0510	2,57%
Kunststoff PVC	0,0506	2,55%
Kunststoff PE	0,0245	1,23%
Kunststoff PA	0,0153	0,77%
Synthesekautschuk	0,0086	0,43%
Nickel	0,0078	0,39%
Chrom	0,0072	0,36%
Silikon	0,0070	0,35%
Blei	0,0046	0,23%
Naturkautschuk	0,0045	0,23%
Klebstoffe	0,0042	0,21%
Aluminium	0,0040	0,20%
Sauerstoff	0,0034	0,17%
Kunststoff POM	0,0026	0,13%
Zinn	0,0020	0,10%
Kunststoff PET	0,0014	0,07%
Kunststoff PK	0,0013	0,07%
Kunststoff PBT	0,0013	0,07%

In unserer aktuellen Materialdeklaration werden ausschließlich Bestandteile aufgeführt, die ein Mindestgewicht von einem Gramm erreichen. Dies bedeutet, dass Bestandteile, deren Gewicht unter 1 Gramm liegen, in der Auflistung nicht berücksichtigt werden. Diese Regelung dient der Vereinfachung des Dokumentationsprozesses und stellt sicher, dass der Fokus auf den wesentlichen Materialkomponenten liegt, die signifikante Anteile in den Produkten darstellen.

9. Qualitätssicherung

9.1 DATEN

Für einige Bauteile, deren Herstellungs- und Verarbeitungsprozesse zum Zeitpunkt der Erhebung nicht näher bekannt sind, wurden Annahmen getroffen, welche auf durchschnittlichen, beziehungsweise weitverbreiteten Fertigungsverfahren beruhen.

Für die Bewertung des CO_2 -Fußabdrucks in Version 1.0 wurde zunächst auf Primärdaten aus dem Referenzjahr 2022 zurückgegriffen, die sich ausschließlich auf die Herstellungsphase bezogen. Um jedoch eine ganzheitlichere Betrachtung zu gewährleisten, die auch die Phasen der Distribution und Lagerung und Nutzung einschließt, wurde das Referenzjahr auf 2023 aktualisiert. Für den vorgelagerten Prozess, der Rohstoffgewinnung und Bezug von Vorprodukten wurde sowohl in der vorherigen Version als auch in dieser auf Sekundärdaten der LCI-Datenbank Ecoinvent und Angaben unserer Zulieferer zurückgegriffen. Durch engen Austausch unserer Zulieferer konnten einige Datensätze aktualisiert und der Anteil an Sekundärdaten minimiert werden.

Diese Version enthält alle aktuell verfügbaren Daten, die die bisherigen durch Anpassungen in den verbauten Bauteilen ersetzt haben. Durch die Aktualisierung stellen wir sicher, dass unsere CO_2 -Fußabdruckermittlung aktuell, umfassend und repräsentativ für unsere kontinuierlichen Bemühungen um Nachhaltigkeit ist.

Die zur Verfügung gestellten und zur Fakturierung verwendeten CO₂e-Faktoren der Ecoinvent Datenbank basieren auf Grundlage eines GWP von 100 Jahren und des IPCC Berichts aus 2021. Bei den zur Berechnung herangezogenen CO₂-Äquivalenzfaktoren handelt es sich um Datensätze, welche sich auf einen bestimmten geografischen Standort beziehen und für die Berechnung der Version 2.0 in folgende Geographien aufteilen:

Geographische Marktabdeckung der Datensätze				
	DSX Touch	DEX Next	CEX-U	WCX3
GLO Globaler Gesamtmarkt	62%	63%	61%	65%
DE Markt für den geografischen Standort Deutschland	4%	4%	6%	4%
RoW Sind spezifische Daten zu einem geografischen Standort verfügbar, wird dieser vom globalen Markt getrennt und der restliche Markt unter "Rest of the World" geführt	14%	14%	16%	14%
RER Markt für den europäischen Raum	20%	19%	17%	18%

Da sich die Geographien lediglich auf die generischen CO_2 -Äquivalenzfaktoren beziehen und damit die Berechnungsgrundlage widerspiegeln, gibt die nachfolgende Tabelle eine Übersicht auf den Bezug unserer Werkstoffe (auf erster Ebene):

9.2 ANGABEN ZUR PRÜFUNGSERKLÄRUNG

Die Referentin für Klima und Politik, Lea Welzel, bestätigt hiermit, dass sie die Inhalte der vorliegenden Arbeit auf Plausibilität überprüft hat. Durch die Überprüfung wurde sichergestellt, dass die dargelegten Informationen und Argumente logisch konsistent sind, relevante Fakten und Quellen korrekt zitiert wurden und die Schlussfolgerungen im Kontext der Thematik sinnvoll und nachvollziehbar sind.

Die Plausibilitätsprüfung zielt darauf ab, sicherzustellen, dass die präsentierten Inhalte mit den aktuellen wissenschaftlichen Erkenntnissen, politischen Zusammenhängen und relevanten Diskussionen im Bereich Klima und Politik übereinstimmen.

Datum: 06.05.2025

9.3 PRÜFUNGSERGEBNIS

Die in dieser Arbeit präsentierten Daten und Ergebnisse sind zum Zeitpunkt der Abgabe nach bestem Wissen und Gewissen aktuell und korrekt. Es ist jedoch zu beachten, dass die vorliegenden Informationen auf verfügbaren Quellen und Daten basieren, die sich einem kontinuierlichen Wandel und einer Aktualisierung unterziehen können.

Die Referentin für Klima und Politik, Lea Welzel und Ansprechpartnerin, Luisa Jarck, weisen darauf hin, dass es möglich ist, dass neue Erkenntnisse, Forschungsergebnisse oder aktualisierte Daten nach der Abgabe dieser Arbeit veröffentlicht werden, die zu einer Modifikation oder Überarbeitung der präsentierten Ergebnisse führen können. Infolgedessen sollten die hier vorgelegten Daten und Ergebnisse im Kontext dieser dynamischen Entwicklungen betrachtet und interpretiert werden.

Datum: 06.05.2025

10. Abkürzungsverzeichniss

Kürzel	Erläuterung
ABS	Acrylnitril-Butadien-Styrol-Copolymer
CH ₄	Methan
CO ₂	Kohlenstoffdioxid
CO ₂ e	CO ₂ -Äquivalente
DE	Geografie Deutschland
EPD	Environmental Product Declaration
EU	Europäische Union
FKW	Fluorkohlenwasserstoffe
GHG	Greenhouse Gas
GLO	Geografie Global
GWP	Global Warming Potential
HFKW	Teilhalogenierte Fluorkohlenwasserstoffe
MPS	Multiple Power System
N ₂ O	Lachgas
IPCC	Intergovernmental Panel on Climate Change
IPCC	Zwischenstaatlicher Ausschuss für Klimawandel
PA	Polyamid
PBT	Polybutylenterephthalat
PC	Polycarbonat
PCF	Product Carbon Footprint

Kürzel	Erläuterung
PE	Polyethylen
PET	Polyethylenterephthalat
PK	Polyketon
PMMA	Polymethylmethacrylat
POM	Polyoxymethylen
PP	Polypropylen
PPE	Polyphenylenether
PPS	Polyphenylensulfid
PS	Polystyrol
PTFE	Polytetrafluorethylen
PVC	Polyvinylchlorid
RER	Geografie Europa
RoW	Geografie Rest of the World
SF ₆	Schwefelhexafluorid
THG	Treibhausgas
PK	Polyketone
WBCSD	World Business Council for Sustainable Development
WRI	World Resources Institute

11. Begriffserklärungen

Begriff	Erläuterung
CO ₂ -Äquivalente (CO ₂ e)	Maßeinheit zur Vereinheitlichung der Klimawirkung der Treibhausgase gemäß IPCC
${\sf CO}_2$ -Äquivalenzfaktor	Klimawirkung eines Werkstoffs, Bauteils oder Prozesses bezogen auf eine angegebene Menge. Er basiert auf dem Global Warming Potential (GWP) und gibt an, wie viele Kilogramm CO ₂ -Äquivalente durch die Herstellung, Nutzung oder Entsorgung eines Materials oder Produkts entstehen
Cradle-to-Gate	Wiege bis Werkstor: Analyse der Prozesse ab der Rohstoffgewinnung bis zum Prozess der Auslieferung
Cradle-to-gate mit Phase der Nutzung	Bilanziert die Treibhausgasemissionen von der Rohstoffgewinnung bis zum Ende der Nutzungsphase des Produkts, jedoch ohne die Entsorgungsphase.
Cradle-to-Grave	Wiege bis zur Bahre: Analyse der Prozesse des gesamten Lebenszyklus
DIN EN ISO 9001:2015	Anforderungen an Qualitätsmanagementsysteme
DIN EN ISO 14001:2015	Anforderungen an Umweltmanagementsysteme
DIN EN ISO 50001:2018	Anforderungen an Energiemanagementsysteme
DIN EN 15804:2022	Nachhaltigkeit von Bauwerken – Umweltproduktdeklarationen – Grundregeln für die Produktkategorie Bauprodukte
DIN EN 16258:2013	Methode zur Berechnung und Deklaration des Energieverbrauchs und der Treibhausgasemissionen bei Transportdienstleistungen
Embodied Carbon	Eingebettete Emissionen: CO ₂ -Emissionen, die durch Herstellung, Transport, Bau, Wartung oder Entsorgung von Materialien entstehen und Bestandteil in einem Produkt oder einem Gebäude sind
Global Warming Potential (GWP)	Maß zur Bewertung der Klimawirkung verschiedener Treibhausgase im Vergleich zu Kohlendioxid (CO ₂)
IPCC Bericht	Übersichtsarbeit zum Forschungsstand der Klimaforschung
ISO 14067:2018	Carbon Footprint von Produkten - Anforderungen an und Leitlinien für Quantifizierung
ISO 14025:2006	Umweltkennzeichnungen und -deklarationen - Typ III Umweltdeklarationen - Grundsätze und Verfahren
Kohelndioxid-Äquivalent (CO_2 e)	Maßeinheit, die die Klimawirkung verschiedener Treibhausgase auf eine gemeinsame Basis bringt. Sie geben an, wie viel Kohlendioxid (CO ₂) benötigt würde, um dieselbe Erwärmungswirkung wie eine bestimmte Menge eines anderen Treibhausgases zu verursachen
Operational Carbon	Die während des Betriebs eines Gebäudes entstehenden CO ₂ -Emissionen
PAS2050:2011	Norm zur Berechnung des CO ₂ -Fußabdrucks von der British Standards Institution (BSI)
Scope 1	Umfasst alle direkte Treibhausgas-Emissionen, wie direkt in Unternehmensimmobilien verbrauchte Primärenergieträger. Beispiele sind u.a. Erdgas, Heizöl, Benzin oder Diesel.
Scope 2	Umfasst die indirekten Treibhausgas-Emissionen, die aus der Erzeugung der beschafften Energie resultieren

12. Quellen

PCF für Klebstoffe in CO₂e/kg

Industrieverband Klebstoffe e.V.: Typische "Product Carbon Footprint" (PCF)-Werte für Industrieklebstoffe, URL: https://www.klebstoffe.com/nachhaltigkeit/product-carbon-footprint/ (Stand: 27.09.2023)

PCF für die Kunststoffe PC, ABS, POM, PBT, PA 6 und PA 6.6

Dr. Jochen Burkard: Präsentation vom 28.07.2023

PCF für PTFE

Bundesamt für Wirtschaft und Ausfuhrkontrolle: Informationsblatt CO_2 -Faktoren, Version 2.0 (01.05.2023), URL: https://www.bafa.de/SharedDocs/Downloads/DE/Energie/eew_infoblatt_co2_faktoren_2023.html (Stand 27.09.2023)

PCF für Alkaline-Batterien

Öko-Institut e.V.: Wiederaufladbare Batterien in Standardgrößen, Entwicklung der Vergabekriterien für ein klimaschutzbezogenes Umweltzeichen (18.06.2012), URL: https://www.oeko.de/impressum (27.09.2023)

PCF für glasfaserverstärkten Kunststoff

SABIC Deutschlang GmbH (08/2023)

Abgrenzung CO₂-Fußabdruck nach GHG und Embodied Carbon

NordESG: Die Verwirrung um "Embodied Carbon" und "Scope Emissions" (05.03.2024), URL: https://nordesg.de/die-verwirrung-um-embodied-carbon-und-scope-emissions/

Alle weiteren Daten wurden von dem Datenbankanbieter Ecoinvent zur Verfügung gestellt

Ecoinvent, Version 3.9.1 (12.2022), URL: https://ecoquery.ecoinvent.org/3.9.1/cutoff/search?query=market+for+display¤tPage=2&pageSize=5 (27.09.2023)

Aufstellung beispielhafter Nutzungsprofile

https://www.waerme-plus.de/downloads (14.05.2024)

Emissionsfaktor der Stromerzeugung in Deutschland für 2023

https://de.statista.com/statistik/daten/studie/1421117/umfrage/emissionen-strom-deutschland-und-frankreich/ (12/2024)

Definition des CO₂-Fußabdrucks (Product Carbon Footprint) und Leitfaden zur Erstellung des Dokuments

 $https://businesspf.hs-pforzheim.de/fileadmin/user_upload/uploads_redakteur/Forschung/INEC/Dokumente/Hottenroth_et_al_Carbon_Footprints_fuer_Produkte_web.pdf (10/2023)$

Änderungshistorie

Version	Kommentar	Stand
1.0	Erste Veröffentlichung	10/2023
2.0	Ergänzung des Cradle-to-Gate Ansatzes um die Phase der Distribution und Lagerung Ergänzung des Cradle-to-Gate Ansatzes um die Phase der Nutzung Änderung des Referenzjahres von 2022 auf 2023 → Inklusive Überarbeitung der Primärdaten für die Bilanzierung der Phase der Rohstoffgewinnung und Vorverarbeitung und Montage Substitution ausgewählter Sekundärdaten gegen Primärdaten durch Auskunft unserer Lieferanten, in der Phase der Rohstoffgewinnung und Vorverarbeitung Kapitel 8.1: Angabe der verwendeten Datensätze nach geografischen Standorten je funktioneller Einheit, anstatt einer Gesamtangabe	06/2024
3.0	Wechsel vom Cradle-to-Gate zum Cradle-to-Grave-Ansatz → Durch Ergänzung der Phase End-of-Life Aktualisierung der Phase Rohstoffgewinnung und Vorverarbeitung in Bezug auf Bauteilumstellungen, Werkstoffumsetzungen, usw.	05/2025

CLAGE GmbH Pirolweg 4 21337 Lüneburg

Fon: +49 4131 89 01-0 info@clage.de

www.clage.de

Technische Änderungen, Änderungen der Ausführung und Irrtum vorbehalten.

Alle verwendeten Handelsnamen und -marken sind Eigentum der jeweiligen Besitzer.

iOS ist eine eingetragene Marke der Apple Inc.

Copyright-Hinweise: Fotos: © CLAGE,

Illustrationen: © CLAGE (S. 6/14/15) / @JoelMasson – stock.adobe.com (Titel, S. 2-31)/

@ ~ Bitter ~, @ = 7 h ¬, @ Genestro – stock.adobe.com (S. 6)/

@ Rubbble, @ = 7 h ¬, @13ree_design, @NanangA, @ YummyBuum, @ Sabavector – stock.adobe.com (S. 14/15) / @freepik (S.15)